SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY (AUTONOMOUS) (Approved by AICTE, New Delhi\& Affiliated to JNTUA, Ananthapuramu) (Accredited by NBA for Civil, EEE, Mech., ECE \& CSE) (Accredited by NAAC with ' A^{+}' Grade) Puttur -517583, Tirupathi District, A.P. (India) QUESTION BANK (DESCRIPTIVE)			
SUBJECT \& CODE:	Analog Electronic circuits(20EC0446)	COURSE \& BRANCH:	B.TECH - EEE
YEAR \& SEM:	IIYR \& I SEM	REGULATION:	R-20

UNIT -I
 FEEDBACK AMPLIFIERS

1.	a)	Define feedback and illustrate the basic concept of Feedback with suitable block diagram.	[L2][CO1]	[6M]
	b)	List different types of feedback and discuss.	[L1][CO1]	[6M]
2.	a)	Compare positive feedback and negative feedback.	[L2][CO2]	[6M]
	b)	Give the classification of basic amplifiers.	[L2][CO2]	[6M]
3.	a)	Interpret voltage series and current series amplifier topologies with necessary diagrams.	[L2][CO1]	[6M]
	b)	Interpret voltage shunt and current shunt amplifier topologies with necessary diagrams.	[L2][CO1]	[6M]
4.	a)	Summarize the expressions of input and output resistances for a Voltage Series feedback amplifier with necessary derivations.	[L2][CO4]	[8M]
	b)	A voltage series negative feedback amplifier has a voltage gain without feedback of $A=500$, input resistance $R_{i}=3 \mathrm{k} \Omega$, output resistance $R_{0}=20 \mathrm{k} \Omega$ and feedback ratio $\beta=0.01$. Calculate the voltage gain A_{f}, input resistance and output resistance of the amplifier with feedback.	[L3][CO3]	[4M]
5.		Summarize the expressions of Gain, input and output resistances for a Current Series feedback amplifier with necessary derivations.	[L2][CO4]	[12M]
6.		Summarize the expressions of Gain, input and output resistances for a current shunt feedback amplifier with necessary derivations.	[L2][CO4]	[12M]
7.		Summarize the expressions of Gain, input and output resistances for a Voltage Shunt feedback amplifier with necessary derivations.	[L2][CO4]	[12M]
8.	a)	List the characteristics of negative feedback amplifiers.	[L1][CO1]	[6M]
	b)	Explain about Noise reduction and nonlinear distortion in negative feedback.	[L3][CO1]	[6M]
9.	a)	Show that how a negative feedback reduces gain of an amplifier.	[L1][CO1]	[6M]
	b)	An amplifier has open loop gain 1000 and feedback ratio of 0.04 , if the open loop gain changes by 10% due to temperature, find the percentage change in the gain of the amplifier feedback.	[L3][CO3]	[6M]
10.	a)	Derive the expression for De-sensitivity (D).	[L1][CO1]	[6M]
	b)	Compare the performance of feedback amplifier.	[L4][CO1]	[6M]

UNIT-II
 OSCILLATORS

1.	a)	Define Oscillator and explain its principle of operation.	[L2][CO1]	[6M]
	b)	Illustrate the condition for oscillation with suitable diagram.	[L2][CO1]	[6M]
2.	a)	Explain Barkhausen criterion for oscillations with suitable diagram.	[L2][CO1]	[6M]
	b)	Interpret the various types of oscillators.	[L3][CO1]	[6M]
3.	a)	Determine the condition for sustained oscillations for an RC phase shift Oscillator with necessary circuit diagrams.	[L3][CO2]	[8M]
	b)	Determine the frequency of oscillations when an RC phase shift oscillator has $\mathrm{R}=100 \mathrm{k} \Omega, \mathrm{C}=0.01 \mu \mathrm{~F}$ and $\mathrm{R}_{\mathrm{C}}=2.2 \mathrm{k} \Omega$.	[L3][CO4]	[4M]
4.	a)	Explain the working principle of Wein-bridge oscillator using BJT and Derive the expression for frequency of sustained oscillations.	[L2][CO5]	[8M]
	b)	In a Wien bridge oscillator, if the value of R is $100 \mathrm{k} \Omega$ and frequency of oscillation is 10 kHz , examine the value of capacitor C.	[L3][CO3]	[4M]
5.	a)	Draw the circuit diagram of general form of an LC oscillator also give the expression for frequency of oscillation.	[L1][CO1]	[6M]
	b)	Derive the load impedance equation of a generalized LC Oscillator.	[L3][CO1]	[6M]
6.	a)	Draw the circuit diagram of Hartley oscillator using BJT and derive the expression for frequency of oscillations.	[L1] [CO1]	[8M]
	b)	In the Hartley oscillator $\mathrm{L}_{2}=0.4 \mathrm{mH}$ and $\mathrm{C}=0.004 \mu \mathrm{~F}$. If the frequency of the oscillator is 120 kHz , find the value of L_{1}. Neglect mutual inductance.	[L3][CO4]	[4M]
7.	a)	Draw the circuit diagram of Colpitts oscillator using BJT and derive the expression for frequency of oscillations.	[L1][CO1]	[8M]
	b)	In the Colpitts oscillator, $\mathrm{C}_{1}=0.2 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=0.02 \mu \mathrm{~F}$.If the frequency of oscillator is 10 kHz , find the value of inductor.	[L3][CO4]	[4M]
8.	a)	Summarize the difference between Hartley and Colpitts oscillator.	[L2][CO4]	[6M]
	b)	In a transistorized Hartley, oscillator the two inductances are 2 mH and $20 \mu \mathrm{H}$. While the frequency is to be changed from 950 kHz to 2050 kHz . Calculate the range over which the capacitor is to be varied.	[L4][CO4]	[6M]
9.	a)	Explain in detail about the crystal oscillator and mention the expression for its frequency of oscillation.	[L2][CO1]	[8M]
	b)	Compare piezoelectric effect and inverse piezoelectric effect with a neat diagram.	[L2][CO6]	[4M]
10.	a)	Summarize the difference between LC and Crystal oscillator.	[L2][CO4]	[4M]
	b)	Explain the concept of stability in oscillators in detail.	[L2][CO6]	[8M]

UNIT-III
 OPERATIONAL AMPLIFIER

1.	a)	Explain the basic information and pin configuration of an op-amp.	[L2][CO1]	[6M]
	b)	Draw the equivalent circuit diagram of Op-amp and list out the ideal characteristics of an operational amplifier.	[L1][CO3]	[6M]
2.	a)	Derive the expression for gain of inverting amplifier.	[L3][CO5]	[6M]
	b)	For an inverting amplifier, $\mathrm{R}_{1}=10 \mathrm{kohm}, \mathrm{R}_{\mathrm{f}}=100 \mathrm{k} \Omega$ with input voltage $\mathrm{V}_{\mathrm{i}}=1 \mathrm{~V}$ and a load resistance of $\mathrm{RL}=25 \mathrm{k} \Omega$ is connected to the output terminal. Calculate i) i_{1} ii) V_{o} iii) i_{L} and iv) load current i_{o} into the output pin.	[L3][CO4]	[6M]
3.	a)	Derive the expression for gain of non-inverting amplifier.	[L3][CO5]	[6M]
	b)	For an Non-inverting amplifier, $\mathrm{R}_{1}=5 \mathrm{kohm}, \mathrm{R}_{\mathrm{f}}=20 \mathrm{k} \Omega$ with input voltage $\mathrm{V}_{\mathrm{i}}=1 \mathrm{~V}$ and a load resistance of $\mathrm{RL}=5 \mathrm{k} \Omega$ is connected to the output terminal. Calculate i) V_{o} ii) A_{CL} iii) i_{L} and iv) load current i_{o} indicating proper direction of flow.	[L3][CO4]	[6M]
4.	a)	What is voltage follower? What are its features and applications?	[L1][CO1]	[6M]
	b)	Estimate the gain of a Differential amplifier.	[L4][CO2]	[6M]
5	a)	What are the four different configuration of differential amplifier?	[L1][CO1]	[6M]
	b)	Derive the expression for gain of Differential amplifier with two op-amps.	[L3][CO5]	[6M]
6.	a)	Define the terms differential mode gain, common mode gain, CMRR.	[L1][CO2]	[6M]
	b)	Explain DC characteristics of op-amp.	[L2][CO3]	[6M]
7.	a)	Illustrate the following terms with neat diagram i)Input bias current ii)Input offset current.	[L3][CO1]	[6M]
	b)	Illustrate the following terms with neat diagram i)Input offset voltage ii) Thermal drift.	[L3][CO1]	[6M]
8.	a)	Explain AC characteristics of op-amp.	[L2][CO5]	[8M]
	b)	Draw and explain frequency response of practical op-amp.	[L2][CO1]	[6M]
9.	a)	What is frequency compensation and explain how the frequency response is varied with respect to External Compensation technique.	[L1][CO6]	[8M]
	b)	Explain how the frequency response is varied with respect to internal Compensation technique.	[L2][CO5]	[4M]
10.	a)	Explain the term slew rate and illustrate the importance in op-amp circuits.	[L2][CO3]	[6M]
	b)	An op-amp has a slew rate of $2 \mathrm{~V} / \mu \mathrm{s}$. What is the maximum frequency of an output sinusoidal its peak value of 5 V at which the distortion sets in due to the slew rate limitation?	[L1][CO4]	[4M]

UNIT-IV

APPLICATIONS OF THE OP-AMP

1.	a)	Design and explain the operation of inverting summing amplifier.	[L3][CO3]	[6M]
	b)	Design an inverting adder circuit using an op-amp to get the output expression as $\mathrm{V}_{0}=-\left(0.1 \mathrm{~V}_{1}+\mathrm{V}_{2}+10 \mathrm{~V}_{3}\right)$, Where $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} are the inputs.	[L3][CO3]	[6M]
2.	a)	Design and explain the operation of non-inverting summing amplifier.	[L3][CO3]	[6M]
	b)	The op-amp non-inverting summing circuit has the following parameters $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}=\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=2 \mathrm{k} \Omega, \mathrm{V}_{1}=+2 \mathrm{~V}, \mathrm{~V}_{2}=-3$ $\mathrm{V}, \mathrm{V}_{3}=+4 \mathrm{~V}$. Determine the output voltage V_{o}.	[L3][CO3]	[6M]
3.	a)	Draw the circuit of a subtractor using op-amp and derive the expression for voltage gain.	[L3][CO1]	[6M]
	b)	Draw an op-amp circuit whose output is $\mathrm{V}_{0}=\left(\mathrm{V}_{3}+\mathrm{V}_{4}\right)-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$.	[L3][CO1]	[6M]
4.	a)	Explain the operation of differentiator using op-amp with a neat circuit diagram.	[L2][CO5]	[6M]
	b)	Draw the input-output waveforms and frequency response of differentiator.	[L1][CO1]	[6M]
5.	a)	Design a differentiator to differentiate an input signal that has $\mathrm{f}_{\max }=100 \mathrm{~Hz}$	[L2][CO5]	[6M]
	b)	Explain the operation of integrator using op-amp with a neat circuit diagram.	[L3][CO5]	[6M]
6.	a)	Draw the input-output waveforms and frequency response of integrator.	[L1][CO1]	[6M]
	b)	Explain sample and hold circuit using op-amp.	[L2][CO1]	[6M]
7.	a)	Draw a neat circuit of astable multivibrator using op-amp and explain operation with waveforms.	[L2][CO2]	[6M]
	b)	Define the duty cycle .Identify the percentage of duty cycle if $\mathrm{T}_{\text {on }}=0.6 \mathrm{msec}$, $\mathrm{T}_{\text {off }}=0.4 \mathrm{msec}$	[L3][CO4]	[6M]
8.	a)	Derive the equation for frequency of oscillation of astable multivibrator using op-amp.	[L3][CO4]	[6M]
	b)	Calculate the frequency of oscillation for an astable multivibrator having $\mathrm{R}_{2}=10 \mathrm{k} \Omega, \mathrm{R}_{1}=8.6 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=100 \mathrm{k} \Omega$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$.	[L4][CO4]	[6M]
9.	a)	Explain the operation of monostable multivibrator using op-amp ,with a neat circuit and its waveforms	[L2][CO2]	[6M]
	b)	Derive the equation for pulse width of the monostable multivibrator using op-amp.	[L3][CO4]	[6M]
10.		Explain the operation of triangular wave generator using op-amp, with a neat circuit diagram and its waveforms.	[L2][CO3]	[12M]

UNIT-V
 ACTIVE FILTERS AND CONVERTERS USING OP-AMP

1.	a)	Define active filter and give its characteristics.	[L4][CO2]	[6M]
	b)	Explain the first order low pass butter worth filter with a neat circuit diagram.	[L2][CO2]	[6M]
2.	a)	Draw the frequency response of filters.	[L3][CO1]	[6M]
	b)	Explain the first order high pass butter worth filter with a neat circuit diagram.	[L2][CO2]	[6M]
3.		Design a low pass filter at a cut-of frequency of 15.9 kHz with pass band gain of 1.5 and draw the frequency response.	[L3][CO3]	[12M]
4.		Design a high pass filter at a cut-of frequency of 10 kHz with pass band gain 1.5 and draw the frequency response.	[L3][CO3]	[12M]
5.	a)	Explain the weighted resistor DAC with a neat diagram.	[L2][CO2]	[6M]
	b)	An 8-bit Analog to Digital converter has a supply voltage of +12 volts. Calculate: (i) The voltage step size for LSB. (ii) The value of analog input voltage for a digital output of 01001011.	[L4][CO4]	[6M]
6.	a)	Explain in detail about R-2R DAC with a neat diagram.	[L2][CO3]	[6M]
	b)	The basic step of a 9 bit DAC is 10.3 mV . If " 000000000 " represents 0 V . What output is produced if the input is " 101101111 "?	[L1][CO4]	[6M]
7.	a)	Draw the circuit diagram of inverted R-2R DAC and explain its operation.	[L2][CO2]	[6M]
	b)	Design an inverted R-2R ladder DAC for digital input word 001.	[L3][C04]	[6M]
8.	a)	Explain about the flash type ADC using op-amp.	[L2][CO1]	[6M]
	b)	Summarize the truth table for a flash type op-amp ADC using 8 by 3 priority encoder.	[L2][CO4]	[6M]
9.		Draw the circuit diagram of Dual Slope ADC and explain its working with neat sketches.	[L2][CO2]	[12M]
10.		Discuss the parameter and specifications of DAC/ADC.	[L2]][CO1]	[12M]

Prepared by
Mrs. D. Sakunthala, Assistant Professor,
Mrs. P Saranya, Assistant Professor,
Department of ECE,
SIETK, Puttur.

